Ollama 是一个基于 Go 语言的本地大语言模型运行框架,类 Docker 产品(支持 list,pull,push,run 等命令),事实上它保留了 Docker 的操作习惯,支持上传大语言模型仓库 (有 deepseek、llama 2,mistral,qwen 等模型,你也可以自定义模型上传)。

在管理模型的同时,它还提供了一些 Api 接口,让你能够像调用 OpenAI 提供的接口那样进行交互。

一、下载安装 Ollama

Ollama 支持多平台部署,你可以在官网,选择适合的安装包。

下载地址:https://ollama.com

运行之后,访问 localhost:11434,查看是否正常运行:

二、AI 模型管理

ollama 安装之后,其同时还是一个命令,与模型交互就是通过命令来进行的。

  • ollama list:显示模型列表。
  • ollama show:显示模型的信息
  • ollama pull:拉取模型
  • ollama push:推送模型
  • ollama cp:拷贝一个模型
  • ollama rm:删除一个模型
  • ollama run:运行一个模型

官方提供了一个模型仓库,https://ollama.com/library, 你可以搜索你想要的模型。

官方建议:应该至少有 8 GB 可用 RAM 来运行 7 B 型号,16 GB 来运行 13 B 型号,32 GB 来运行 33 B 型号。

在这里我选择下载目前最火的开源 deepseek-r1 模型来做演示。模型地址为:https://ollama.com/library/deepseek-r1 ,因我的电脑有 32G,所以选择了 14b 的模型来调试。

    ollama run deepseek-r1:14b

执行命令,如果本地没有该模型,则会先下载模型再运行。首次运行启动可能略慢。

(鉴于很多朋友无法下载ollama,这里给大家整理好了ollama的安装包,扫描领取即可↓↓↓↓

三、简单交互

模型运行之后,会默认进入到交互状态,你可以按下 Ctrl + D 退出交互,但此时模型并不会退出,仍旧可以正常通过 Api 接口交互。

终端交互示例:

接口请求参考官方文档的介绍 API 文档,下边是简单的示例:

curl http://localhost:11434/api/generate -d "{\"model\":\"deepseek-r1:14b\", \"prompt\":\"介绍下JeecgBoot是什么项目\", \"stream\": false}"

接口请求支持 stream 模式,上边这个请求响应 10s 左右,如果使用 stream 模式,体验会提升不少。

四、通过 Web 界面调用大模型

这里介绍几个 UI 框架可以直接与 ollama 大模型对接。

项目一 :ollama-webui-lite

项目地址: https://github.com/ollama-webui/ollama-webui-lite

此项目是 open-webui 的简化版,注意需:node >= 16

git clone https://github.com/ollama-webui/ollama-webui-lite.git
cd ollama-webui-lite
yarn
yarn dev

运行之后,你可以对连接信息进行设置,默认是连接本机的 http://localhost:11434/api,如果你也是本机部署,那就不用更改。然后界面选择启动的模型,就可以对话了。

项目二 :lobe-chat

项目地址:https://github.com/lobehub/lobe-chat

这是一个集成多种模型能力的对话聊天 UI,部署简单,界面酷炫。

Docker 部署命令:

docker run -itd --name=lobechat -p 3210:3210 registry.cn-hangzhou.aliyuncs.com/jeecgdocker/lobe-chat

如果你是本地 ollama 部署,启动之后,就可以在 web 界面进行交互了。 目前最新版还不支持 deepseek v3,可以先用其他大模型测试下

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐