
【BotSharp框架示例 ——实现聊天机器人,并通过 DeepSeek V3实现 function calling】
BotSharp框架示例 ——实现聊天机器人,并通过 DeepSeek V3实现 function calling
本文通过仔细研究 BotSharp 框架的示例代码PizzaBot,实现以下内容:
1、分析Botsharp实现聊天机器人的基本组成部分;
2、模仿PizzaBot一步一步搭建自己的聊天机器人;
3、通过分析PizzaBot,实现控制agent 驱动不同的大模型;
4、实现大模型调用本地函数的示例。
一、一点点感悟
深刻感觉.Net在AI领域已经有很多优秀的框架可以使用,但是苦于资料太少,本人就研究这一个小小的例子,就花费了很长的时间。
真希望 出现以前那种一步一步学xxx 类似的文章,能引导学习的人快速上手。
真希望本例子能够作为一个投石问路,会有更多的人来分享实际的案例,清晰的使用指南。
二、创建项目
闲言少叙,开始模仿。
本文 参考
1、Botsharp的示例 PizzaBot
2、Botsharp的官方文档:https://botsharp.verdure-hiro.cn/guide/agent/hook
1、创建项目
目标是搭建一个关于天气咨询的一个聊天机器人,
所以 模仿PizzaBot 创建了三个项目
1、创建类库MyWeatherPlugin(主要部分,承载AgentHook、ConversationHook,以及本地Function的定义)
2、创建类库WeatherApiDefaultService(用于模拟PizzaBot,实现默认的服务注册和方法–此处经过测试,也可以不添加,不是必须要执行的步骤)
3、创建WebAPI项目MyWeatherAPI(通过配置、启动聊天机器人,主要关注配置文件和启动类)
2、添加引用
通过测试,需要添加以下 引用:
1、MyWeatherPlugin中需要添加 BotSharp.Core的引用
2、WeatherApiDefaultService 因为 是非必须的,可以不用添加这个项目了,如果添加了,可以 照着PizzaBot照搬下
3、MyWeatherAPI 需要添加 以下类库引用:
BotSharp.Core
BotSharp.Abstraction
BotSharp.Logger
BotSharp.OpenAPI
BotSharp.Plugin.ChatHub
由于本例中使用到了 DeepSeek,所以要引用
BotSharp.Plugin.DeepSeekAI
在之前的探索中还使用过 llama本地模型,如果要用llama模型的话,要引用 以下的库
BotSharp.Plugin.LLamaSharp
LLamaSharp
LLamaSharp.Backend.Cpu
LLamaSharp.Backend.Cuda12
3、MyWeatherPlugin项目代码编写
模拟Pizzabot,添加 以下内容
1)添加公共using文件
2)添加MyWeatherPlugin
注意,MyWeatherPlugin文件中需要注册注册一些AgentId,示例中使用的 是 启动后通过postman 创建agent的方法(引用见 Botsharp的官方文档:https://botsharp.verdure-hiro.cn/guide/agent/hook,有启动postman workspace的链接)
using BotSharp.Abstraction.Agents;
using BotSharp.Abstraction.Conversations;
using BotSharp.Abstraction.Plugins;
using MyWeatherPlugin.Hooks;
namespace MyWeatherPlugin
{
public class MyWeatherPlugin: IBotSharpPlugin
{
public string Id => "1c8270eb-de63-4ca0-8903-654d83ce5ece";
public string Name => "MyWeather AI Assistant";
public string Description => "An example of an Weather AI Chatbot.";
public string IconUrl => "https://cdn-icons-png.flaticon.com/512/6978/6978255.png";
public string[] AgentIds => new[]
{
"01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d",
"01fcc3e5-9af7-49e6-ad7a-a760bd12dc4a",
"6745151e-6d46-4a02-8de4-1c4f21c7da95",
"dfd9b46d-d00c-40af-8a75-3fbdc2b89869"
};
public void RegisterDI(IServiceCollection services, IConfiguration config)
{
// Register hooks
services.AddScoped<IAgentHook, MyWeatherAgentHook>();
//services.AddScoped<IConversationService, MyWeatherConversationHook>();
}
}
}
3)新建 Hooks的目录,参考Pizzabot,添加agenthook和 conversationhook
CommonAgentHook
MyWeatherAgentHook
MyWeatherConversationHook
agent是一个智能体,可以决定调用某一个具体的大模型,决定使用什么provider。
conversation是一个会话,也就是一个上下文,是LLM模型都需要的一个参数,用于通过上下文来推理用户的问题。
所以这里的agentHook 是botsharp中用于注册agent和agent行为的 程序,能决定 agent在创建时、加载时等各个事件发生时的一些自定义行为。
本例中没有涉及,但是在实验的时候,通过添加不同的方法,是能够验证,这些事件是能够顺利被触发的。
conversationhook 同理
代码分别是:
using BotSharp.Abstraction.Agents;
namespace MyWeatherPlugin.Hooks
{
public class CommonAgentHook : AgentHookBase
{
public override string SelfId => string.Empty;
public CommonAgentHook(IServiceProvider services, AgentSettings settings)
: base(services, settings)
{
}
public override bool OnInstructionLoaded(string template, Dictionary<string, object> dict)
{
dict["current_date"] = DateTime.Now.ToString("MM/dd/yyyy");
dict["current_time"] = DateTime.Now.ToString("hh:mm tt");
dict["current_weekday"] = DateTime.Now.DayOfWeek;
return base.OnInstructionLoaded(template, dict);
}
}
}
using BotSharp.Abstraction.Agents.Enums;
using BotSharp.Abstraction.Agents;
using BotSharp.Abstraction.Functions.Models;
namespace MyWeatherPlugin.Hooks
{
public class MyWeatherAgentHook : AgentHookBase
{
public override string SelfId => BuiltInAgentId.AIAssistant;
public MyWeatherAgentHook(IServiceProvider services, AgentSettings settings)
: base(services, settings)
{
}
public override bool OnInstructionLoaded(string template, Dictionary<string, object> dict)
{
return base.OnInstructionLoaded(template, dict);
}
}
}
using BotSharp.Abstraction.Conversations.Models;
using BotSharp.Abstraction.Conversations;
namespace MyWeatherPlugin.Hooks
{
public class MyWeatherConversationHook : ConversationHookBase
{
private readonly IServiceProvider _services;
private readonly IConversationStateService _states;
public MyWeatherConversationHook(IServiceProvider services,
IConversationStateService states)
{
_services = services;
_states = states;
}
public override async Task OnPostbackMessageReceived(RoleDialogModel message, PostbackMessageModel replyMsg)
{
if (replyMsg.FunctionName == "get_my_weather_type")
{
// message.StopCompletion = true;
}
return;
}
public override Task OnTaskCompleted(RoleDialogModel message)
{
return base.OnTaskCompleted(message);
}
#if USE_BOTSHARP
public override async Task OnResponseGenerated(RoleDialogModel message)
{
var agentService = _services.GetRequiredService<IAgentService>();
var state = _services.GetRequiredService<IConversationStateService>();
var agent = await agentService.LoadAgent(message.CurrentAgentId);
if (agent.McpTools.Any(item => item.Functions.Any(x => x.Name == message.FunctionName)))
{
var data = JsonDocument.Parse(JsonSerializer.Serialize(message.Data));
state.SaveStateByArgs(data);
}
await base.OnResponseGenerated(message);
}
#endif
}
}
4)添加Functions目录, 参考Pizzabot 添加几个function,
这里是本例子的一个重点,这里主要是 通过 function定义,决定一些在本地可以被调用到的自定义行为。这是非常重要的。本例中添加了三个方法:
GetMyWeatherTypeFn
GetWeatherDesFn(这是本例中最后实现调用的方法)
GetWeatherToolFn
方法中的 Execute 方法,决定了最终方法 最终返回给大模型的 文本内容
using BotSharp.Abstraction.Conversations.Models;
using BotSharp.Abstraction.Conversations;
using BotSharp.Abstraction.Messaging.Models.RichContent.Template;
using BotSharp.Abstraction.Messaging.Models.RichContent;
using BotSharp.Abstraction.Messaging;
using System.Text.Json;
namespace MyWeatherPlugin.Functions
{
public class GetMyWeatherTypeFn : IFunctionCallback
{
public string Name => "get_my_weather_type";
private readonly IServiceProvider _services;
public GetMyWeatherTypeFn(IServiceProvider services)
{
_services = services;
}
public async Task<bool> Execute(RoleDialogModel message)
{
var states = _services.GetRequiredService<IConversationStateService>();
var weatherTypes = new List<string>
{
"晴天",
"雨天",
"雪天"
};
message.Content = JsonSerializer.Serialize(weatherTypes);
message.RichContent = new RichContent<IRichMessage>
{
Recipient = new Recipient
{
Id = states.GetConversationId()
},
FillPostback = true,
Message = new ButtonTemplateMessage
{
Text = "Please select a weather type",
Buttons = weatherTypes.Select(x => new ElementButton
{
Type = "text",
Title = x,
Payload = x
}).ToArray()
}
};
return true;
}
}
}
using BotSharp.Abstraction.Conversations.Models;
using System.Text.Json;
namespace MyWeatherPlugin.Functions;
public class GetWeatherDesFn : IFunctionCallback
{
public string Name => "get_weather_des";
public async Task<bool> Execute(RoleDialogModel message)
{
message.Data = new
{
sunny_desc = "晴空万里,万里无云,艳阳高照,碧海蓝天",
rainny_desc = "大雨倾盆,电闪雷鸣,乌云密闭,水位猛涨",
snowny_desc = "鹅毛大雪,原驰蜡象,瑞雪丰年,一片雪白"
};
message.Content =JsonSerializer.Serialize(message.Data);
return true;
}
}
using BotSharp.Abstraction.Conversations;
using BotSharp.Abstraction.Conversations.Models;
namespace MyWeatherPlugin.Functions;
public class GetWeatherToolFn : IFunctionCallback
{
public string Name => "get_weather_tool";
private readonly IServiceProvider _service;
public GetWeatherToolFn(IServiceProvider service)
{
_service = service;
}
public async Task<bool> Execute(RoleDialogModel message)
{
message.Content = "The weather date is 2025-04-25";
var state = _service.GetRequiredService<IConversationStateService>();
state.SetState("weather_date", "2025-04-25");
return true;
}
}
最终 MyWeatherPlugin 的结构如图:
4、WeatherApiDefaultService项目代码编写
因为是非必须的,而且完全参考 Pizzabot中的 defaultservice的,所以这部分就略过了
5、WebAPI MyWeatherAPI 的项目代码编写
看下配置文件: appsettings.json
这是 经过实验,需要保留的一些节点,
保留 jwt节点 是因为botsharp框架中涉及到用户认证
LlmProviders 中保留 本例中用到LLM模型的驱动
PluginLoader 是加载的所有库
注意 填上 自己的 appkey
{
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft.AspNetCore": "Warning"
}
},
"AllowedHosts": "*",
"AllowedOrigins": [
"http://localhost:5015",
"http://0.0.0.0:5015",
"https://botsharp.scisharpstack.org",
"https://chat.scisharpstack.org"
],
"Jwt": {
"Issuer": "botsharp",
"Audience": "botsharp",
"Key": "31ba6052aa6f4569901facc3a41fcb4adfd9b46dd00c40af8a753fbdc2b89869"
},
"LlmProviders": [
{
"Provider": "llama-sharp",
"Models": [
{
"Name": "llama-2-7b-guanaco-qlora.Q2_K.gguf",
"Type": "chat"
}
]
},
{
"Provider": "deepseek-ai",
"Models": [
{
"Name": "deepseek-chat",
"ApiKey": "xxxxx",
"Endpoint": "https://api.deepseek.com/v1/",
"Type": "chat",
"PromptCost": 0.0015,
"CompletionCost": 0.002
}
]
}
],
"Router": {
},
"Evaluator": {
"AgentId": "dfd9b46d-d00c-40af-8a75-3fbdc2b89869"
},
"Agent": {
"DataDir": "agents",
"TemplateFormat": "liquid",
"HostAgentId": "01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d",
"EnableTranslator": false,
"LlmConfig": {
//"Provider": "llama-sharp",
//"Model": "llama-2-7b-guanaco-qlora.Q2_K.gguf"
"Provider": "deepseek-ai",
"Model": "deepseek-chat"
}
},
"MCP": {
"Enabled": false,
"McpClientOptions": {
"ClientInfo": {
"Name": "SimpleToolsBotsharp",
"Version": "1.0.0"
}
},
"McpServerConfigs": [
{
"Id": "WeatherServer",
"Name": "WeatherServer",
"TransportType": "sse",
"TransportOptions": [],
"Location": "http://localhost:58905/sse"
}
]
},
"Conversation": {
"DataDir": "conversations",
"ShowVerboseLog": false,
"EnableLlmCompletionLog": false,
"EnableExecutionLog": true,
"EnableContentLog": true,
"EnableStateLog": true,
"EnableTranslationMemory": false,
"CleanSetting": {
"Enable": true,
"BatchSize": 50,
"MessageLimit": 2,
"BufferHours": 12,
"ExcludeAgentIds": []
},
"RateLimit": {
"MaxConversationPerDay": 100,
"MaxInputLengthPerRequest": 256,
"MinTimeSecondsBetweenMessages": 2
}
},
"SideCar": {
"Conversation": {
"Provider": "botsharp"
}
},
"ChatHub": {
"EventDispatchBy": "group"
},
"LlamaSharp": {
"Interactive": true,
"ModelDir": "F:/models",
"DefaultModel": "llama-2-7b-guanaco-qlora.Q2_K.gguf",
"MaxContextLength": 1024,
"NumberOfGpuLayer": 20
},
"AzureOpenAi": {
},
"RoutingSpeeder": {
},
"Database": {
"Default": "FileRepository",
"TablePrefix": "BotSharp",
"BotSharpMongoDb": "",
"Redis": "botsharp.redis.cache.windows.net:6380,password=,ssl=True,abortConnect=False",
"FileRepository": "data",
"Assemblies": [ "BotSharp.Core" ]
},
"Interpreter": {
"Python": {
"PythonDLL": "C:/Python313/python313.dll"
}
},
"PluginLoader": {
"Assemblies": [
"BotSharp.Core",
"BotSharp.Core.SideCar",
"BotSharp.Core.Crontab",
"BotSharp.Logger",
"BotSharp.Plugin.OpenAI",
"BotSharp.Plugin.AzureOpenAI",
"BotSharp.Plugin.DeepSeekAI",
"BotSharp.Plugin.MetaMessenger",
"BotSharp.Plugin.ChatHub",
"MyWeatherPlugin",
"BotSharp.Plugin.LLamaSharp"
],
"ExcludedFunctions": [
"McpToolAdapter"
]
}
}
progam.cs 是启动程序,代码如下
using BotSharp.Abstraction.Conversations;
using BotSharp.Abstraction.Messaging.JsonConverters;
using BotSharp.Abstraction.Users;
using BotSharp.Core;
using BotSharp.Core.Agents;
using BotSharp.Core.MCP;
using BotSharp.Logger;
using BotSharp.OpenAPI;
using BotSharp.Plugin.ChatHub;
using MyWeatherPlugin.Hooks;
var builder = WebApplication.CreateBuilder(args);
// Add services to the container.
builder.Services.AddBotSharpCore(builder.Configuration, options =>
{
options.JsonSerializerOptions.Converters.Add(new RichContentJsonConverter());
options.JsonSerializerOptions.Converters.Add(new TemplateMessageJsonConverter());
}).AddBotSharpOpenAPI(builder.Configuration,
builder.Configuration.GetSection("AllowedOrigins").Get<string[]>() ?? new[]
{
"http://0.0.0.0:5015",
"https://botsharp.scisharpstack.org",
"https://chat.scisharpstack.org"
}, builder.Environment, true)
.AddBotSharpLogger(builder.Configuration);
builder.Services.AddControllers();
builder.AddServiceDefaults();
builder.Services.AddSignalR();
var app = builder.Build();
// Configure the HTTP request pipeline.
app.MapHub<SignalRHub>("/chatHub");
app.UseMiddleware<WebSocketsMiddleware>();
app.UseBotSharp()
.UseBotSharpOpenAPI(app.Environment);
//app.MapControllers();
app.Run();
6、data文件夹中声明agent 、conversation、functions
这是这个例子中 最重要的部分,
1、程序运行
2、通过 官方文档:https://botsharp.verdure-hiro.cn/guide/quick-start/get-started
中的 postman 链接 如下:
调整成自己的 Host等参数
3)依次 执行
New User Account
Get Access Token
Create Agent
的操作 ,如图:
4)这时候要查找下 创建的 agent目录在哪里,应该在 webAPI的bin目录下
\bin\Debug\net9.0\data\agents
我把这个目录 拷贝到 webAPI的根目录 以及 Myweatherplugin项目的根目录下了
注意每次修改的时候 我都同步拷贝了。(实验是有效的,可能不需要,但是这么做是不出错的)
5)假设创建的agentId是本例的 01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d
注意要修改 appsettings.json 中的 agent节点,修改 MyWeatherPlugin 项目中的 MyWeatherPlugin 类中 加载的 agentid数组
然后拷贝 webAPI目录下的 \MyWeatherAPI(解决方案目录)\MyWeatherAPI(webAPI项目目录)\bin\Debug\net9.0\data\agents\01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d
到
\MyWeatherAPI(解决方案目录)\MyWeatherAPI (webAPI项目目录)\data\agents 目录下
同时拷贝到 \MyWeatherAPI\MyWeatherPlugin\data\agents 目录下
以上步骤 可能不是必须的,但是这么做 不出错。(注意后面改了之后 也同步拷贝下)
6)选择修改 MyWeatherPlugin\data\agents\01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d下的配置信息
结构如图:
改动信息 如下:
functions/get_my_weather_type.json
{
"name": "get_my_weather_type",
"description": "获取所有的天气类型,您可以选择后返回响应的描述",
"parameters": {
"type": "object",
"properties": {},
"required": []
}
}
functions/get_weather_des.json
{
"name": "get_weather_des",
"description": "用户选择了天气后,获取关于天气的描述",
"parameters": {
"type": "object",
"properties": {
"weather_type": {
"type": "string",
"description": "The type of the weather."
}
},
"required": [ "weather_type" ]
}
}
functions/get_weather_tool.json
{
"name": "get_weather_tool",
"description": "提供一个适合天气出行的外带工具.",
"parameters": {
"type": "object",
"properties": {
"weather_type": {
"type": "string",
"description": "天气类型."
},
"weather_desc": {
"type": "string",
"description": "天气描述."
}
},
"required": [ "weather_type", "weather_desc" ]
}
}
instructions/instructions.liquid
你是一个关于天气资讯的小助手,你可以根据用户的天气问题,回复天气的描述和不同的天气要带什么工具出门。
根据一下步骤进行操作:
1: 首先回答下用户今天是 {{current_date}},时间是 {{current_time}}.
2: 如果用户一些需求,你需要询问用户是否需要相关帮助。
3: 如果的问题中包含了关键词 {{weather_type}},你就执行函数 get_my_weather_type 。
response/func.get_weather_des.0.liquid
{% assign weather_type = weather_type | downcase %}
{% if weather_type contains "晴天" -%}
关于 {{weather_type}} 的描述是 is ${{ sunny_desc }}.您觉得满意吗?
{%- elsif weather_type contains "雨天" -%}
关于 {{weather_type}} 的描述是 is ${{ rainny_desc }}.您觉得满意吗??
{%- elsif weather_type contains "雪天" -%}
关于 {{weather_type}} 的描述是 is ${{ snowny_desc }}.您觉得满意吗??
{%- else -%}
我们没有 {{weather_type}} 您天气的描述
{%- endif %}
{% if quantity == nil -%}
How many slices would you like to order?
{%- endif %}
agent.json ---- 这个最重要,定义了 需要大模型回调的函数声明
{
"id": "01fcc3e5-0af7-49e6-ad7a-a760bd12dc4d",
"name": "Weather About",
"description": "weather.Talk",
"createdDateTime": "2024-05-07T10:00:00Z",
"updatedDateTime": "2024-05-07T10:00:00Z",
"disabled": false,
"isPublic": true,
"llmConfig": {
"provider": "deepseek-ai",
"model": "deepseek-chat"
},
"profiles": [ "weather" ],
"functions": [
{
"name": "get_my_weather_type",
"description": "获取所有的天气类型,您可以选择后返回响应的描述",
"parameters": {
"type": "object",
"properties": {},
"required": []
}
},
{
"name": "get_weather_des",
"description": "用户选择了天气后,获取关于天气的描述",
"parameters": {
"type": "object",
"properties": {
"weather_type": {
"type": "string",
"description": "The type of the weather."
}
},
"required": [ "weather_type" ]
}
},
{
"name": "get_weather_tool",
"description": "提供一个适合天气出行的外带工具.",
"parameters": {
"type": "object",
"properties": {
"weather_type": {
"type": "string",
"description": "天气类型."
},
"weather_desc": {
"type": "string",
"description": "天气描述."
}
},
"required": [ "weather_type", "weather_desc" ]
}
}
],
"labels": [ "about" ]
}
其他基本不再重要了。
三、运行程序 进行测试
刚刚 postman已经执行了 createagent 操作了。
继续执行 接下来的 New Conversation 和 sendMessage 测试
执行结果如图:
四、总结
1、实现了 通过 agent 控制调用不同的 大模型。
2、通过 conversation 控制 不同的 会话上下文,相当于session,
3、通过输入内容,控制了 让 大模型来调用本地的函数,输出准确的结果。
更多推荐
所有评论(0)