
本地部署+微调堪比满血deepseek-r1的qwq-32b
通义千问开源了推理模型QwQ-32BQwQ-32B 在一系列基准测试中进行了评估,测试了数学推理、编程能力和通用能力。以下结果展示了 QwQ-32B 与其他领先模型的性能对比,包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 以及原始的 DeepSeek-R1。
通义千问开源了推理模型QwQ-32B
QwQ-32B 在一系列基准测试中进行了评估,测试了数学推理、编程能力和通用能力。以下结果展示了 QwQ-32B 与其他领先模型的性能对比,包括 DeepSeek-R1-Distilled-Qwen-32B、DeepSeek-R1-Distilled-Llama-70B、o1-mini 以及原始的 DeepSeek-R1。
在测试数学能力的 AIME24评测集上,以及评估代码能力的 LiveCodeBench 中,千问 QwQ-32B 表现与DeepSeek-R1相当,远胜于 o1-mini 及相同尺寸的R1 蒸馏模型;在由Meta首席科学家杨立昆领衔的“最难LLMs评测榜” LiveBench、谷歌等提出的指令遵循能力IFEval评测集、由加州大学伯克利分校等提出的评估准确调用函数或工具方面的BFCL测试中,千问 QwQ-32B 的得分均超越了 DeepSeek- R1。
大规模强化学习
研究团队在冷启动的基础上开展了大规模强化学习。在初始阶段,特别针对数学和编程任务进行了 RL 训练。与依赖传统的奖励模型(reward model)不同,研究团队通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。
研究团队发现在 RL 扩展过程中,随着训练轮次的推进,这两个领域中的性能均表现出持续的提升。
在第一阶段的 RL 过后,研究团队增加了另一个针对通用能力的 RL。此阶段使用通用奖励模型和一些基于规则的验证器进行训练。研究团队发现,通过少量步骤的通用 RL,可以提升其他通用能力,同时在数学和编程任务上的性能没有显著下降。
模型推理
Transformers
from modelscope import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/QwQ-32B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r's are in the word \"strawberry\""
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Ollama本地拉起
通过Ollama与魔搭平台的整合,开发者也可以直接在本地的Ollama环境,直接运行QwQ-32B模型:
ollama run modelscope.cn/Qwen/QwQ-32B-GGUF
模型微调
我们展示对QwQ-32B进行微调的demo,并给出自定义数据集的格式。
在开始微调之前,请确保您的环境已准备妥当。
# pip install git+https://github.com/modelscope/ms-swift.git
git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .
首先我们使用QWQ-32B蒸馏部分数据,保持其思考的能力,将蒸馏的数据保存在本地路径:qwq-32b-distill.jsonl。
CUDA_VISIBLE_DEVICES=0,1 \
swift infer \
--model Qwen/QwQ-32B \
--infer_backend vllm \
--val_dataset 'AI-ModelScope/alpaca-gpt4-data-zh#1000' 'AI-ModelScope/alpaca-gpt4-data-en#1000' \
--gpu_memory_utilization 0.9 \
--max_model_len 32768 \
--max_new_tokens 8192 \
--result_path qwq-32b-distill.jsonl \
--tensor_parallel_size 2 \
--disable_custom_all_reduce true
微调脚本如下:
NPROC_PER_NODE=2 \
CUDA_VISIBLE_DEVICES=0,1 \
swift sft \
--model Qwen/QwQ-32B \
--train_type lora \
--dataset 'qwq-32b-distill.jsonl' \
'<your-dataset-path>' \
--torch_dtype bfloat16 \
--num_train_epochs 1 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--learning_rate 1e-4 \
--lora_rank 8 \
--lora_alpha 32 \
--target_modules all-linear \
--gradient_accumulation_steps 8 \
--eval_steps 50 \
--save_steps 50 \
--save_total_limit 5 \
--logging_steps 5 \
--max_length 4096 \
--output_dir output \
--warmup_ratio 0.05 \
--dataloader_num_workers 4 \
--model_author swift \
--model_name swift-robot \
--deepspeed zero2
自定义数据集可以参考以下格式:
{"messages": [{"role": "system", "content": "你是个有用无害的助手"}, {"role": "user", "content": "告诉我明天的天气"}, {"role": "assistant", "content": "<think>\n...</think>\n\n明天天气晴朗"}]}
{"messages": [{"role": "system", "content": "你是个有用无害的数学计算器"}, {"role": "user", "content": "1+1等于几"}, {"role": "assistant", "content": "<think>\n...</think>\n\n等于2"}, {"role": "user", "content": "再加1呢"}, {"role": "assistant", "content": "<think>\n...</think>\n\n等于3"}]}
训练显存占用:
训练完成后,使用以下命令对训练后的权重进行推理,这里的--adapters
需要替换成训练生成的last checkpoint文件夹。
CUDA_VISIBLE_DEVICES=0 \
swift infer \
--adapters output/vx-xxx/checkpoint-xxx \
--stream true \
--max_new_tokens 2048 \
--infer_backend pt
推送模型到ModelScope:
CUDA_VISIBLE_DEVICES=0 \
swift export \
--adapters output/vx-xxx/checkpoint-xxx \
--push_to_hub true \
--hub_model_id '<your-model-id>' \
--hub_token '<your-sdk-token>'
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)