DeepSeek 是国内顶尖 AI 团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称"AI界的六边形战士"。

DeepSeek 身上的标签有很多,其中最具代表性的标签有以下两个:

  1. 低成本(不挑硬件、开源)
  2. 高性能(推理能力极强、回答准确)

一、为什么要部署本地DeepSeek?

相信大家在使用 DeepSeek 时都会遇到这样的问题:

这是由于 DeepSeek 大火之后访问量比较大,再加上漂亮国大规模、持续的恶意攻击,导致 DeepSeek 的服务器很不稳定。所以,这个此时在本地部署一个 DeepSeek 大模型就非常有必要了。

再者说,有些数据比较敏感,咱也不想随便传到网上去,毕竟安全第一嘛。这时候,本地大模型的优势就凸显出来了。它就在你自己的电脑上运行,完全不用担心网络问题,而且数据都在本地,隐私更有保障。而且,本地大模型可以根据你的需求进行定制,想怎么用就怎么用,灵活性超强!

二、怎么部署本地大模型?

在本地部署 DeepSeek 只需要以下三步:

  1. 安装 Ollama。
  2. 部署 DeepSeek。
  3. 使用 DeepSeek:这里我们使用 ChatBox 客户端操作 DeepSeek(此步骤非必须)。

Ollama、DeepSeek 和 ChatBox 之间的关系如下:

  • Ollama 是“大管家”,负责把 DeepSeek 安装到你的电脑上。
  • DeepSeek 是“超级大脑”,住在 Ollama 搭建好的环境里,帮你做各种事情。
  • ChatBox 是“聊天工具”,让你更方便地和 DeepSeek 交流。

安装Ollama

Ollama 是一个开源的大型语言模型服务工具。它的主要作用是帮助用户快速在本地运行大模型,简化了在 Docker 容器内部署和管理大语言模型(LLM)的过程。

PS:Ollama 就是大模型届的“Docker”。

Ollama 优点如下:

  • 易于使用:即使是没有经验的用户也能轻松上手,无需开发即可直接与模型进行交互。
  • 轻量级:代码简洁,运行时占用资源少,能够在本地高效运行,不需要大量的计算资源。
  • 可扩展:支持多种模型架构,并易于添加新模型或更新现有模型,还支持热加载模型文件,无需重新启动即可切换不同的模型,具有较高的灵活性。
  • 预构建模型库:包含一系列预先训练好的大型语言模型,可用于各种任务,如文本生成、翻译、问答等,方便在本地运行大型语言模型。

Ollama 官网:ollama.com/

下载并安装Ollama

下载地址:ollama.com/

用户根据自己的操作系统选择对应的安装包,然后安装 Ollama 软件即可。

安装完成之后,你的电脑上就会有这样一个 Ollama 应用:

点击应用就会运行 Ollama,此时在你电脑状态栏就可以看到 Ollama 的小图标,测试 Ollama 有没有安装成功,使用命令窗口输入“ollama -v”指令,能够正常响应并显示 Ollama 版本号就说明安装成功了,如下图所示:

部署DeepSeek

Ollama 支持大模型列表:ollama.com/library

选择 DeepSeek 大模型版本,如下图所示:

DeepSeek版本介绍

例如,安装并运行 DeepSeek:ollama run deepseek-r1:1.5b

使用DeepSeek

这里我们使用 ChatBox 调用 DeepSeek 进行交互,ChatBox 就是一个前端工具,用于方便的对接各种大模型(其中包括 DeepSeek),并且它支持跨平台,更直观易用。

ChatBox 官网地址:chatboxai.app/zh

点击下载按钮获取 ChatBox 安装包:

安装完 Chatbox 之后就是配置 DeepSeek 到 Chatbox 了,如下界面所示:

使用 DeepSeek,如下图所示:

三、扩展知识:本地DeepSeek集成Idea

安装CodeGPT插件

配置Ollama

Ollama API 默认调用端口号:11434

检查相应的配置,如下所示:

使用Ollama

四、优缺点分析

本地大模型的优缺点分析说完部署,我们来分析一下本地大模型的优缺点,好让大家心里有个数。

优点

  • 隐私性高:数据都在本地,不用担心泄露问题,对于一些敏感数据处理来说,这是最大的优势。
  • 稳定性强:不受网络影响,只要电脑不坏,模型就能稳定运行,不用担心中途卡顿或者断线。
  • 可定制性强:可以根据自己的需求进行调整和优化,想让它做什么功能就做什么功能,灵活性很高。

缺点

  • 硬件要求高:大模型对电脑的性能要求不低,如果电脑配置不够,可能会运行很卡,甚至跑不起来。
  • 部署复杂:对于小白来说,一开始可能会觉得有点复杂,需要安装各种东西,还得配置参数,不过只要按照教程来,其实也没那么难。
  • 维护成本高:如果模型出了问题,可能需要自己去排查和解决,不像在线工具,有问题直接找客服就行。

五、最后

小伙伴们,看完这些,是不是觉得本地大模型其实也没那么可怕呢?其实只要按照步骤来,小白也能轻松搞定。动手做起来吧,说不定你就能发现更多好玩的功能,让这个大模型成为你工作和学习的得力助手呢!要是你在部署过程中遇到什么问题,别忘了留言问我哦,我们一起解决!

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐