你有没有想过,能不能像跟人聊天一样,直接问 PDF 文件或技术手册问题?比如你有一本很厚的说明书,不想一页页翻,只想问它:“这个功能怎么用?”或者“这个参数是什么意思?”现在有了 AI 技术,这完全可以实现!

这篇文章教你如何用两个工具(DeepSeek R1Ollama)来搭建一个智能系统,让它帮你从 PDF 里找答案。这个系统叫 RAG(检索增强生成),简单来说就是:先找资料,再生成答案

为什么要用 DeepSeek R1?

  1. 省钱:它比 OpenAI 的模型便宜 95%,效果却差不多。
  2. 精准:每次只从 PDF 里找 3 个相关片段来回答问题,避免瞎编。
  3. 本地运行:不用联网,速度快,隐私也有保障。

你需要准备什么?

  1. Ollama:一个让你在电脑上本地运行 AI 模型的工具。

    • 下载地址:https://ollama.com/

      img

    • 安装后,运行命令:

      ollama run deepseek-r1  # 默认用7B模型
      
  2. DeepSeek R1 模型:有不同大小,最小的 1.5B 模型适合普通电脑,更大的模型效果更好,但需要更强的电脑配置。

    • 运行小模型:

      ollama run deepseek-r1:1.5b
      
  3. 通用配置原则 模型显存占用(估算):

  • 每 1B 参数约需 1.5-2GB 显存(FP16 精度)或 0.75-1GB 显存(INT8/4-bit 量化)。
  • 例如:32B 模型在 FP16 下需约 48-64GB 显存,量化后可能降至 24-32GB。

内存需求:至少为模型大小的 2 倍(用于加载和计算缓冲)。

存储:建议 NVMe SSD,模型文件大小从 1.5B(约 3GB)到 32B(约 64GB)不等。

怎么搭建这个系统?

第一步:导入工具包

我们用 Python 写代码,需要用到一些工具包:

  • LangChain:处理文档和检索。
  • Streamlit:做一个简单的网页界面。
import streamlit as st
from langchain_community.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama

img

第二步:上传 PDF

用 Streamlit 做一个上传按钮,把 PDF 传上去,然后用工具提取里面的文字。

uploaded_file = st.file_uploader("上传PDF文件", type="pdf")
if uploaded_file:
    with open("temp.pdf", "wb") as f:
        f.write(uploaded_file.getvalue())
    loader = PDFPlumberLoader("temp.pdf")
    docs = loader.load()

第三步:把 PDF 切成小块

PDF 内容太长,直接喂给 AI 会吃不消。所以要把文字切成小块,方便 AI 理解。

text_splitter = SemanticChunker(HuggingFaceEmbeddings())
documents = text_splitter.split_documents(docs)

img

第四步:建一个“知识库”

把切好的文字块转换成向量(一种数学表示),存到一个叫 FAISS 的数据库里。这样 AI 就能快速找到相关内容。

embeddings = HuggingFaceEmbeddings()
vector_store = FAISS.from_documents(documents, embeddings)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})  # 每次找3个相关块

第五步:设置 AI 模型

用 DeepSeek R1 模型来生成答案。告诉它:只根据 PDF 内容回答,不知道就说“我不知道”

llm = Ollama(model="deepseek-r1:1.5b")
prompt = """
1. 仅使用以下上下文。
2. 如果不确定,回答“我不知道”。
3. 答案保持在4句话以内。

上下文: {context}

问题: {question}

答案:
"""
QA_CHAIN_PROMPT = PromptTemplate.from_template(prompt)

第六步:把整个流程串起来

把上传、切块、检索和生成答案的步骤整合成一个完整的系统。

llm_chain = LLMChain(llm=llm, prompt=QA_CHAIN_PROMPT)
document_prompt = PromptTemplate(
    template="上下文:\n内容:{page_content}\n来源:{source}",
    input_variables=["page_content", "source"]
)
qa = RetrievalQA(
    combine_documents_chain=StuffDocumentsChain(
        llm_chain=llm_chain,
        document_prompt=document_prompt
    ),
    retriever=retriever
)

第七步:做个网页界面

用 Streamlit 做一个简单的网页,用户可以输入问题,系统会实时返回答案。

user_input = st.text_input("向你的PDF提问:")
if user_input:
    with st.spinner("思考中..."):
        response = qa(user_input)["result"]
        st.write(response)

img

未来展望

DeepSeek R1 只是开始,未来还会有更多强大的功能,比如:

  • 自我验证:AI 能检查自己的答案对不对。
  • 多跳推理:AI 能通过多个步骤推导出复杂问题的答案。

总结

用这个系统,你可以轻松地从 PDF 里提取信息,像跟人聊天一样问问题。赶紧试试吧,释放 AI 的潜力!
完整版代码放在下方二维码↓↓↓

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐