引言

如何科学的评估RAG系统,对于RAG系统的性能优化至关重要。为此,本文提供了一个详细操作指南,帮助用户使用Ollama本地部署最新的DeepSeek R1模型,并使用最新的XRAG1.0框架来构建RAG系统并评估你的本地RAG知识库系统。

这一过程分为三个主要步骤:

  • Ollama安装

  • 下载启动DeepSeek R1模型

  • 配置XRAG使用本地模型和知识库,运行评估以解锁全流程自动化评测能力。

RAG技术核心流程

检索增强生成(Retrieval-Augmented Generation, RAG)通过结合文档检索与大模型生成能力,让AI回答既精准又可靠。RAG核心流程分为四步:

  1. 检索准备:解析用户问题,优化查询语句

  2. 文档检索:从海量文档中匹配相关片段

  3. 结果精炼:过滤排序,保留核心信息

  4. 答案生成:基于上下文生成最终回答
    上图展现了一个完整的RAG流程的各个步骤,其中蓝色字体标注的部分是RAG技术中值得深入理解并改进的关键组成部分。

然而,有过实战经验的小伙伴的经验应该知道,搭建RAG系统是比较简单的,但如何让系统达到预期目标是一件非常有挑战性的任务。当前系统功能优化基本也是围绕这四个关键节点展开,那么如何有效的评测RAG关键节点模块的性能对于RAG系统的优化起着关键的作用。

XRAG

为了更深入地评测RAG技术中的各个模块性能,北航团队发布的可全面测评RAG系统的框架:XRAGpaper:https://arxiv.org/abs/2412.15529

code:https://github.com/DocAILab/XRAG

利用XRAG并借助DeepSeek模型,可以实现本地的RAG知识库系统,并对其中的不同模块快速进行检验测试。具体来说,XRAG支持全面的RAG测评Benchmark与Toolkit,涵盖了50+以上的测试指标与RAG的全面评测与失败点优化,支持4类Advanced RAG模块( 查询重构, 先进检索, 问答模型, 后处理) 的对比, 并集成模块内的多种具体实现,支持OpenAI大模型 API。XRAG1.0版本还提供了简单的Web UI Demo、轻交互的数据上传与统一标准格式, 集成了 RAG失败点检测与优化方法。

具体XRAG框架内容细节可以阅读原论文。

XRAG安装使用

XRAG安装使用主要分为三个主要步骤,首先安装Ollama,然后通过ollama安装DeepSeek R1模型,最后配置XRAG使用本地模型和知识库、运行评估以解锁全流程自动化评测能力。

1、Ollama安装

Ollama 是一个开源工具,允许用户在本地机器上运行 LLM,如 DeepSeek R1。进入Ollama官网(官网链接:https://ollama.com)后,点击页面右上角的Download按照提示按步骤下载安装即可,如上图所示。然后,进入选择自己电脑操作系统的页面,即可等待下载并安装完成。

2、下载启动Deepseek模型

完成上述的Ollama的安装步骤后,就可以开始拉取并运行DeepSeek R1模型了。具体操作如下:

可以首先打开一个命令行终端,首先输入ollama serve进行ollama服务的启动,如下图所示:之所以图片的第一次命令运行出现error,是因为我事先启动过ollama服务了。所以大家也可以通过这个命令查看自己电脑上是否已经启动了ollama服务,如果启动了就不需要再次运行这个命令。

接下来终于到了下载模型的环节:如上图所示,首先选择目前火热的deepseek-r1模型,由于是本地服务,这里选择最小的模型1.5b(如果资源足的小伙伴,也可以下载参数量多的版本)。将官网的下载命令粘贴到命令行中,下载过程展示如上图所示。

下载速度一般很快,喝杯水的功夫就完成了。上面是下载完的结果展示图,此时我们已经可以在简陋的命令行中跟刚刚下载的deepseek-r1模型进行聊天了。当然,由于是本地的小模型,所以可能稍微没有想象中的那么聪明,但至少不会出现服务器繁忙的回复了哈哈哈。

到这一步骤,我们已经完成在Ollama的基础上运行本地deepseek模型的流程。

3、XRAG安装评测

以下是使用XRAG的详细步骤:


1、XRAG安装

确保 Python 版本为 3.11 或更高。在这里,我们使用conda创建虚拟环境(具体安装细节可参考conda官方网站):安装 XRAG:


2、配置 XRAG

XRAG 使用 config.toml 文件进行配置。一般情况,我们保持默认配置即可。我们可以在使用可视化界面时,直接对XRAG进行配置,更简洁方便。


3、运行评估运行以下命令,打开XRAG的可视化网页。通过上面的可视化网页,我们可以选择本地的文件作为我们的知识库:加载数据需要一定的时间:

然后,可以对我们本地知识库所采用的配置进行设置:包括回答生成时所使用的大模型等等。这里,我们将选择前面步骤中运行的本地模型:


4、自动评测配置完毕后,我们点击下一步,就可以开始针对本地知识库系统进行回答问题了:XRAG能够根据你的本地RAG知识库系统的回答自动进行评测(通过使用openai的大模型进行评估),并利用各种经典指标量化回答的质量,下面的图片是其中一些指标的实例:到这里为止,我们就可以利用XRAG框架完成本地RAG知识库系统的搭建,并对我们的本地知识库进行了评估了。祝各位玩的开心!

注意事项(Notice!)

近期互联网披露,如果Ollama直接暴露服务端口(默认为 11434)于公网,并且未启用身份认证机制,远程攻击者可以在未授权的情况下访问其高危接口。建议受影响的用户尽快修改相关配置或部署安全策略,以收敛安全风险。

根据CNVD漏洞平台最新修复建议(https://mp.weixin.qq.com/s/QKrJXmOYv9KVfIEHBLeCww):

  • 1、若Ollama只提供本地服务,设置环境变量Environment=“OLLAMA_HOST=127.0.0.1”,仅允许本地访问。

  • 2、若Ollama需提供公网服务,选择以下方法添加认证机制:

  • 1)修改config.yaml、settings.json 配置文件,限定可访问Ollama 服务的IP地址;

  • 2)通过防火墙等设备配置IP白名单,阻止非授权IP的访问请求;

  • 3)通过反向代理进行身份验证和授权(如使用OAuth2.0协议),防止未经授权用户访问。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐