ai虚拟主播系统开发代码
实际应用中,若想实现更逼真的虚拟主播效果,需借助专业图形引擎(如 Unity、Unreal Engine)以及更复杂的动作捕捉、面部表情生成技术。base_video_path = "virtual_anchor_base_video.mp4" # 假设已有基础虚拟主播视频。await room.send_danmaku("虚拟主播直播中") # 可自定义弹幕内容。print(f"虚拟主播回复
AI 虚拟主播系统功能繁多,需整合语音识别、自然语言处理、语音合成、视频处理及直播推流等多方面技术。以下代码以 Python 为基础,结合多个常用库,实现了从用户语音输入到虚拟主播回复并推流直播的基本功能。运行代码前,请确保安装SpeechRecognition
、transformers
、gTTS
、moviepy
、opencv - python
、bili - live - danmaku
(用于 B 站直播推流,可按需替换为其他平台相关库)等库,安装命令示例:
import speech_recognition as sr
from transformers import AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip
import os
import numpy as np
import cv2
from bilibili_api import live, sync
# 语音识别函数
def recognize_speech():
r = sr.Recognizer()
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
print(f"识别到的内容: {text}")
return text
except sr.UnknownValueError:
print("无法识别语音")
return ""
except sr.RequestError as e:
print(f"请求错误; {e}")
return ""
# 自然语言理解与回复生成函数
def generate_response(user_input):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# 语音合成并返回音频文件路径
def text_to_speech(text, lang='zh - CN'):
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
# 唇形同步模拟,根据语音时长调整视频帧
def lip_sync_video(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
video_duration = video.duration
audio_duration = audio.duration
if video_duration > audio_duration:
new_fps = video.fps * (audio_duration / video_duration)
new_video = video.set_fps(new_fps)
new_video = new_video.set_duration(audio_duration)
else:
new_video = video.set_duration(audio_duration)
new_video.write_videofile("lipsynced_video.mp4", codec='libx264')
return "lipsynced_video.mp4"
# 简单的表情和动作模拟,根据语音情感调整视频(假设音量高为积极情感)
def simulate_expression_and_action(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
audio_data = audio.to_soundarray(fps=audio.fps)
max_volume = np.max(np.abs(audio_data))
if max_volume > 0.5: # 假设0.5为积极情感阈值
def happy_action(frame):
height, width, _ = frame.shape
M = cv2.getRotationMatrix2D((width / 2, height / 2), 10, 1.1)
return cv2.warpAffine(frame, M, (width, height))
new_video = video.fl(happy_action)
else:
new_video = video
new_video.write_videofile("action_simulated_video.mp4", codec='libx264')
return "action_simulated_video.mp4"
# B站直播推流函数(需自行替换房间号等信息)
async def bili_live_push(video_path):
room = live.LiveDanmaku(room_id=123456) # 替换为实际房间号
await room.connect()
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
await room.send_danmaku("虚拟主播直播中") # 可自定义弹幕内容
await room.send_frame(frame)
cap.release()
await room.close()
# 主函数,整合所有功能
def main():
base_video_path = "virtual_anchor_base_video.mp4" # 假设已有基础虚拟主播视频
user_input = recognize_speech()
while user_input.lower() != "退出":
response = generate_response(user_input)
print(f"虚拟主播回复: {response}")
audio_path = text_to_speech(response)
synced_video_path = lip_sync_video(base_video_path, audio_path)
action_simulated_path = simulate_expression_and_action(synced_video_path, audio_path)
sync(bili_live_push(action_simulated_path))
os.remove(audio_path)
os.remove(synced_video_path)
os.remove(action_simulated_path)
user_input = recognize_speech()
if __name__ == "__main__":
main()
这段代码中,recognize_speech
函数实现语音识别,generate_response
进行自然语言处理生成回复,text_to_speech
完成语音合成,lip_sync_video
和simulate_expression_and_action
分别实现唇形同步与表情动作模拟,bili_live_push
用于 B 站直播推流。实际应用中,若想实现更逼真的虚拟主播效果,需借助专业图形引擎(如 Unity、Unreal Engine)以及更复杂的动作捕捉、面部表情生成技术。
更多推荐
所有评论(0)