
DeepSeek大模型新王 | DeepSeek R1/R1-Zero开源来袭
DeepSeek-V3,这是一个强大的专家混合 (MoE) 语言模型,总共有 671B 个参数,每个令牌激活了 37B。为了实现高效的推理和具有成本效益的训练,DeepSeek-V3 采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,这些架构在 DeepSeek-V2 中得到了全面验证。此外,DeepSeek-V3 开创了一种用于负载均衡的辅助无损策略,并设定了多标记预测训练目标
DeepSeek-V3,这是一个强大的专家混合 (MoE) 语言模型,总共有 671B 个参数,每个令牌激活了 37B。
论文链接: https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf
为了实现高效的推理和具有成本效益的训练,DeepSeek-V3 采用了多头潜在注意力 (MLA) 和 DeepSeekMoE 架构,这些架构在 DeepSeek-V2 中得到了全面验证。
此外,DeepSeek-V3 开创了一种用于负载均衡的辅助无损策略,并设定了多标记预测训练目标以获得更强的性能。我们在 14.8 万亿个多样化和高质量的代币上对 DeepSeek-V3 进行预训练,然后是监督微调和强化学习阶段,以充分利用其功能。
综合评估表明,DeepSeek-V3 的性能优于其他开源模型,并实现了与领先的闭源模型相当的性能。尽管性能出色,但 DeepSeek-V3 只需要 2.788M H800 GPU 小时即可进行完整训练。此外,它的训练过程非常稳定。在整个训练过程中,我们没有遇到任何无法恢复的损失峰值或执行任何回滚。
延续便宜大碗特点的基础之上,DeepSeek V3发布即完全开源,直接用了53页论文把训练细节和盘托出的那种。
怎么说呢,QLoRA一作的一个词评价就是:优雅。
具体来说,DeepSeek V3是一个参数量为671B的MoE模型,激活37B,在14.8T高质量token上进行了预训练。
在多项测评上,DeepSeek V3达到了开源SOTA,超越Llama 3.1 405B,能和GPT-4o、Claude 3.5 Sonnet等TOP模型正面掰掰手腕
其价格比Claude 3.5 Haiku还便宜,仅为Claude 3.5 Sonnet的9%。
在创建 API key 之后,你可以使用以下样例脚本的来访问 DeepSeek API。样例为非流式输出,您可以将 stream 设置为 true 来使用流式输出。
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
距离DeepSeek-V3开源不到一个月,DeepSeek刚刚又开源了全新推理模型DeepSeek R1、DeepSeek R1-Zero,全面提升推理能力,效果媲美o1。
DeepSeek-R1正式发布:API上线、技术报告公开、一口气开源了8个模型,DeepSeek-R1-Distill不要671B,最低只有1.5B(7B, 8B, 14B, 32B, 和70),完全可以run起来~
DeepSeek-R1-Distill 模型的使用方式与 Qwen 或 Llama 模型相同。
例如,您可以使用 vLLM 轻松启动服务:
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
更多推荐
所有评论(0)