
DeepSeek-V3 / R1 推理系统概览
为了实现这两个目标,我们的方案是使用首先 EP 使得 batch size 大大增加,从而提高 GPU 矩阵乘法的效率,提高吞吐。其次 EP 使得专家分散在不同的 GPU 上,每个 GPU 只需要计算很少的专家(因此更少的访存需求),从而降低延迟。但 EP 同时也增加了系统的复杂性。
DeepSeek-V3 / R1 推理系统的优化目标是:更大的吞吐,更低的延迟。
为了实现这两个目标,我们的方案是使用大规模跨节点专家并行(Expert Parallelism / EP)。首先 EP 使得 batch size 大大增加,从而提高 GPU 矩阵乘法的效率,提高吞吐。其次 EP 使得专家分散在不同的 GPU 上,每个 GPU 只需要计算很少的专家(因此更少的访存需求),从而降低延迟。
但 EP 同时也增加了系统的复杂性。复杂性主要体现在两个方面:
- EP 引入跨节点的传输。为了优化吞吐,需要设计合适的计算流程使得传输和计算可以同步进行。
- EP 涉及多个节点,因此天然需要 Data Parallelism(DP),不同的 DP 之间需要进行负载均衡。
大规模跨节点专家并行(Expert Parallelism / EP)
由于 DeepSeek-V3 / R1 的专家数量众多,并且每层 256 个专家中仅激活其中 8 个。模型的高度稀疏性决定了我们必须采用很大的 overall batch size,才能给每个专家提供足够的 expert batch size,从而实现更大的吞吐、更低的延时。需要大规模跨节点专家并行(Expert Parallelism / EP)。
我们采用多机多卡间的专家并行策略来达到以下目的:
- Prefill:路由专家 EP32、MLA 和共享专家 DP32,一个部署单元是 4 节点,32 个冗余路由专家,每张卡 9 个路由专家和 1 个共享专家
- Decode:路由专家 EP144、MLA 和共享专家 DP144,一个部署单元是 18 节点,32 个冗余路由专家,每张卡 2 个路由专家和 1 个共享专家
计算通信重叠
多机多卡的专家并行会引入比较大的通信开销,所以我们使用了双 batch 重叠来掩盖通信开销,提高整体吞吐。
对于 prefill 阶段,两个 batch 的计算和通信交错进行,一个 batch 在进行计算的时候可以去掩盖另一个 batch 的通信开销;
Prefill 阶段的双 batch 重叠
对于 decode 阶段,不同阶段的执行时间有所差别,所以我们把 attention 部分拆成了两个 stage,共计 5 个 stage 的流水线来实现计算和通信的重叠。
Decode 阶段的双 batch 重叠
关于更多双 batch 重叠的细节,可以参考我们的 profiling 数据的 GitHub 仓库:https://github.com/deepseek-ai/profile-data。
尽可能地负载均衡
由于采用了很大规模的并行(包括数据并行和专家并行),如果某个 GPU 的计算或通信负载过重,将成为性能瓶颈,拖慢整个系统;同时其他 GPU 因为等待而空转,造成整体利用率下降。因此我们需要尽可能地为每个 GPU 分配均衡的计算负载、通信负载。
- Prefill Load Balancer
- 核心问题:不同数据并行(DP)实例上的请求个数、长度不同,导致 core-attention 计算量、dispatch 发送量也不同
- 优化目标:各 GPU 的计算量尽量相同(core-attention 计算负载均衡)、输入的 token 数量也尽量相同(dispatch 发送量负载均衡),避免部分 GPU 处理时间过长
- Decode Load Balancer
- 核心问题:不同数据并行(DP)实例上的请求数量、长度不同,导致 core-attention 计算量(与 KVCache 占用量相关)、dispatch 发送量不同
- 优化目标:各 GPU 的 KVCache 占用量尽量相同(core-attention 计算负载均衡)、请求数量尽量相同(dispatch 发送量负载均衡)
- Expert-Parallel Load Balancer
- 核心问题:对于给定 MoE 模型,存在一些天然的高负载专家(expert),导致不同 GPU 的专家计算负载不均衡
- 优化目标:每个 GPU 上的专家计算量均衡(即最小化所有 GPU 的 dispatch 接收量的最大值)
参考架构图
线上系统的实际统计数据
DeepSeek V3 和 R1 的所有服务均使用 H800 GPU,使用和训练一致的精度,即矩阵计算和 dispatch 传输采用和训练一致的 FP8 格式,core-attention 计算和 combine 传输采用和训练一致的 BF16,最大程度保证了服务效果。
另外,由于白天的服务负荷高,晚上的服务负荷低,因此我们实现了一套机制,在白天负荷高的时候,用所有节点部署推理服务。晚上负荷低的时候,减少推理节点,以用来做研究和训练。在最近的 24 小时里(北京时间 2025/02/27 12:00 至 2025/02/28 12:00),DeepSeek V3 和 R1 推理服务占用节点总和,峰值占用为 278 个节点,平均占用 226.75 个节点(每个节点为 8 个 H800 GPU)。假定 GPU 租赁成本为 2 美金/小时,总成本为 $87,072/天。
在 24 小时统计时段内,DeepSeek V3 和 R1:
- 输入 token 总数为 608B,其中 342B tokens(56.3%)命中 KVCache 硬盘缓存。
- 输出 token 总数为 168B。平均输出速率为 20~22 tps,平均每输出一个 token 的 KVCache 长度是 4989。
- 平均每台 H800 的吞吐量为:对于 prefill 任务,输入吞吐约 73.7k tokens/s(含缓存命中);对于 decode 任务,输出吞吐约 14.8k tokens/s。
以上统计包括了网页、APP 和 API 的所有负载。如果所有 tokens 全部按照 DeepSeek R1 的定价[1]计算,理论上一天的总收入为 $562,027,成本利润率 545%。
当然我们实际上没有这么多收入,因为 V3 的定价更低,同时收费服务只占了一部分,另外夜间还会有折扣。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
更多推荐
所有评论(0)