多个动画视觉效果解释 Transformer 和 MoE 的差别,看完这一篇你就懂了!!!
专家混合(MoE)是一种流行的架构,比如最近火爆天的 DeepSeek V3 和 R1 就是这类模型。它利用不同的“专家”来改进 Transformer 模型。下面的示意图展示了它们与 Transformer 的不同之处。
前言
专家混合(MoE)是一种流行的架构,比如最近火爆天的 DeepSeek V3 和 R1 就是这类模型。它利用不同的“专家”来改进 Transformer 模型。
下面的示意图展示了它们与 Transformer 的不同之处。
Transformer 和 MoE 在 decoder 块中有所不同:
-
Transformer 使用前馈网络。
-
MoE 使用 experts,它们是前馈网络,但与 Transformer 中的网络相比更小。
在推理过程中,将选择专家的子集。这使得 MoE 中的推理速度更快。
由于网络包含多个解码器层:
-
文本会在不同的层中经过不同的专家。
-
每个 token 选择的专家也各不相同。
但是,模型如何决定哪些专家是理想的呢?
这由路由器(Router)来完成。接下来我们来讨论它。
路由器就像一个多分类分类器,它对专家生成 softmax 分数。根据这些分数,我们选择前 K 个专家。
路由器与网络一起训练,并学习如何选择最合适的专家。
但这并不简单。让我们来看看其中的挑战!
挑战 1)注意训练初期的这一模式:
-
模型选择“专家 2”
-
该专家变得稍微更好
-
可能会再次被选中
-
该专家学到更多知识
-
又被选中
-
学到更多知识
-
如此循环!
许多专家因此训练不足!
我们通过两个步骤来解决这个问题:
-
在路由器的前馈输出中添加噪声,使其他专家的 logits 更高。
-
将除前 K 个之外的所有 logits 设为负无穷大,这样在 softmax 之后,这些分数就变为零。
这样,其他专家也有机会参与训练。
挑战 2)某些专家可能会比其他专家处理更多的 token,导致部分专家训练不足。
我们通过限制每个专家可处理的 token 数量来避免这种情况。
如果某个专家达到上限,输入的 token 就会被传递给下一个最合适的专家。
MoE 具有更多的参数需要加载,但由于每次仅选择部分专家,因此只有一部分参数被激活。
这使得推理速度更快。@MistralAI 的 Mixtral 8x7B 就是一个基于 MoE 的知名大型语言模型(LLM)。
下面是对比 Transformer 和 MoE 的示意图!
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

更多推荐
所有评论(0)