DeepSeek-R1火遍海内外,但推理服务器频频宕机,专享版按GPU小时计费的天价成本更让中小团队望而却步。

而市面上所谓“本地部署”方案,多为参数量缩水90%的蒸馏版,背后原因是671B参数的MoE架构对显存要求极高——即便用8卡A100也难以负荷。因此,想在本地小规模硬件上跑真正的DeepSeek-R1,被认为基本不可能。

但就在近期,清华大学KVCache.AI团队联合趋境科技发布的KTransformers开源项目公布更新:

支持24G显存在本地运行DeepSeek-R1、V3的671B满血版。预处理速度最高达到286 tokens/s,推理生成速度最高能达到14 tokens/s

其实早在DeepSeek-V2 时代,这个项目就因“专家卸载”技术而备受关注——它支持了236B的大模型在仅有24GB显存的消费级显卡上流畅运行,把显存需求砍到10分之一。

在这里插入图片描述

HuggingFace 的开源负责人的点赞

随着DeepSeek-R1的发布,社区的需求迅速激增,在GitHub盖起上百楼的issue,呼吁对其进行支持。

版本更新发布后,不少开发者也纷纷用自己的3090显卡和200GB内存进行实测,借助与Unsloth优化的组合,Q2_K_XL模型的推理速度已达到9.1 tokens/s,真正实现了千亿级模型的“家庭化”。

在这里插入图片描述

此外,KTransformers团队还公布了v0.3预览版的性能指标,将通过整合Intel AMX指令集,CPU预填充速度最高至286 tokens/s,相比llama.cpp快了近28倍。对于那些需要处理上万级Token上下文的长序列任务(比如大规模代码库分析)来说,相当于能够从“分钟级等待”瞬间迈入“秒级响应”,彻底释放CPU的算力潜能。

另外,KTransformers还提供了兼容Hugginface Transformers的API与ChatGPT式Web界面,极大降低了上手难度。同时,其基于YAML的“模板注入框架”能够灵活切换量化策略、内核替换等多种优化方式。

我给大家准备了一份全套的《AI大模型零基础入门+进阶学习资源包》,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

目前,KTransformers在localLLaMa社区持续位居热榜第一,有上百条开发者的讨论。

在这里插入图片描述

项目背后的技术细节,团队也给出了详细介绍。

利用MoE架构的稀疏性

DeepSeek-R1/V3均采用了MoE(混合专家)架构,这种架构的核心是将模型中的任务分配给不同的专家模块,每个专家模块专注于处理特定类型的任务。MoE结构的模型具有很强的稀疏性,在执行推理任务的时候,每次只会激活其中一部分的模型参数。

因此,MoE架构需要大量的存储空间,但是并不需要很多的计算资源。

基于此,团队采用了GPU/CPU的异构计算划分策略:仅将非Shared部分的稀疏MoE矩阵放在CPU/DRAM上并使用llamafile提供的高速算子处理,剩余稠密部分放在GPU上使用Marlin算子处理。

在这样的情况下,同样使用4bit量化,GPU上的参数只需要24GB的显存环境,这样的消耗只需要一张4090就能满足。

此外通过这样的组合,还能够大幅度提升整个推理的性能,达到286 token/s的预填充和14 token/s的生成速度,比llama.cpp快28倍。

具体到技术实现中,团队采用了基于计算强度的offload策略、高性能的CPU和GPU算子、CUDA Graph加速的多种方式来加速推理速度。

基于计算强度的offload策略

在Attention的核心,DeepSeek引入了一种新的MLA算子,它能够充分利用显卡算力,能够很大程度提升效率。然而,MLA运算符在官方开源的v2版本中,是将MLA展开成MHA进行的计算,这个过程不仅扩大了KV cache大小,还降低了推理性能。

为了真正发挥MLA的性能,在KTransformers推理框架中,团队将矩阵直接吸收到q_proj和out_proj权重中。因此,压缩表示不需要解压缩来计算Attention。

这种调整显著减少了KV缓存大小,并增加了该运算符的算术强度,这非常显著地优化了GPU计算能力的利用率。

在计算中,MLA和Expert的计算强度相差数千倍。因此,团队通过计算强度来决定划分策略,优先将计算强度高的放入GPU(MLA > Shared Expert > Routed Expert),直到GPU放不下为止。

引入CPU和GPU的高性能算子

在CPU算子中,团队使用llamafile作为CPU内核,使用expert并行和其他优化,组成高性能算子框架CPUInfer。此外增加多线程、任务调度、负载均衡、NUMA感知等优化。

在GPU算子的使用上,团队引入Marlin算子作为GPU计算的内核,它能够非常高效地进行量化后的矩阵计算,和torch这些计算量化后的矩阵乘法的库相比,使用Marlin算子完成在GPU上面的计算大概可以达到3.87倍的理想加速效果。

CUDA Graph的改进和优化

为了平衡推理性能和框架本身的易用性/可扩展性,基于Python构建KTransformers框架,同时使用CUDA Graph降低Python调用开销是一个必然的选择。

KTransformers中使用CUDA Graph过程中尽可能地减少了CPU/GPU通讯造成的断点,在CUDA Graph中掺杂和CPU异构算子通讯,最终实现一次decode仅有一个完整的CUDA Graph调用的结果。

灵活高效的推理实验平台

值得关注的是,KTransformers不止是一个固定的推理框架,也不只能推理DeepSeek的模型,它可以兼容各式各样的MoE模型和算子,能够集成各种各样的算子,做各种组合的测试。

此外还同时提供了Windows、Linux的平台的支持,方便运行。

当大模型不断往上卷,KTransformers用异构计算打开一条新的推理路径。基于此,科研工作者无需巨额预算也能够探索模型本质。

GitHub 地址:https://github.com/kvcache-ai/ktransformers

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐