一、ragflow 简介:

RAGFlow 是一款基于深度文档理解的开源检索增强生成(Retrieval-Augmented Generation,RAG)引擎,旨在通过结合信息检索和生成式 AI 的优势,解决现有技术在数据处理和生成答案方面的挑战。

1、作用

RAGFlow 广泛应用于需要动态生成内容且依赖外部知识库的场景,例如:

  • 智能客服:实时从企业知识库中检索相关信息,为客户提供准确、个性化的解答。

  • 文档生成与报告分析:从多个数据源中检索信息并生成结构化的文档或摘要,适合大规模内容管理。

  • 辅助诊断:医疗专业人员可以通过 RAGFlow 快速查找相关医学文献和病例资料,为诊断和治疗提供参考。

  • 文献综述:帮助学生和研究人员快速定位和分析相关的学术文献,高效完成文献综述的撰写。

  • 新闻报道与投资分析:记者和金融机构可以利用 RAGFlow 整合和提炼大量素材,生成新闻稿件或投资分析报告。

2、优势

  1. 深度文档理解:能够从复杂格式的非结构化数据中精准提取知识,支持多种文档格式(如 Word、PPT、Excel、PDF 等),并自动识别文档布局。

  2. 降低幻觉风险:提供清晰的关键引用来源,支持文本分块的可视化和人工干预,确保生成答案有据可依。

  3. 兼容异构数据源:无缝处理多种数据格式,整合不同来源的数据,为用户提供一站式的数据处理和问答体验。

  4. 自动化工作流:支持从个人应用到超大型企业的各类生态系统,提供易用的 API,便于快速集成到各类业务系统。

  5. 高效性与成本优化:通过动态优化流程,减少不必要的计算和查询次数,降低运行成本。

  6. 精准性与可靠性:检索和生成环节相辅相成,确保最终结果的准确性和可靠性。

RAGFlow 的这些特性和优势使其在信息检索和内容生成领域具有广泛的应用前景和显著的竞争力。

我的理解呢,ragflow的意义在于它把原本复杂的rag系统开发,处理成了零代码开发模式,方便非计算机背景的人也可以进行rag系统的搭建和维护,而且融入了类似dify的强大的工作流编排功能。

二、ragflow 本地 windows 部署

配置要求:ragflow是一个相当“重”的项目,如果你的电脑不满足以下条件,请不要随意尝试

Image

1、软件配置安装

首先我们需要安装好 docker 软件

https://www.runoob.com/docker/windows-docker-install.html

安装好 docker 后启动即可,不用登陆不用设置任何东西,一路跳过。

这里我们需要配置 docker 镜像源

Image



{  
  "registry-mirrors": \[  
    "https://registry.docker-cn.com",  
    "http://hub-mirror.c.163.com",  
    "https://docker.mirrors.ustc.edu.cn"  
  \],  
  "insecure-registries": \[\],  
  "debug": false,  
  "experimental": false,  
  "features": {  
    "buildkit": true  
  },  
  "builder": {  
    "gc": {  
      "enabled": true,  
      "defaultKeepStorage": "20GB"  
    }  
  }}


上方代码粘贴替换完毕后点击右下角

Image

到这里我们的 docker 就配置好了

然后我们需要安装 git:

https://cloud.tencent.com/developer/article/2099150

最后我们需要安装 vscode:https://zhuanlan.zhihu.com/p/264785441

2、安装 ragflow

设置安装路径

在 c 盘之外的地方打开一个文件夹用来安装 ragflow,鼠标右键,点击 open Git Bash here

输入命令:

git clone https://github.com/infiniflow/ragflow.git

点击回车就可以看到多了一个文件夹 ragflow

由于默认配置版本是没有 embedding 模型的,所以我们修改配置为完整版。使用 vscode 打开 .env 文件,修改第 84 行和第 87 行,ctrl+s 保存文件。

Image

拉取 docker 镜像

接下来我们开始部署 docker 镜像,按住 win+R 键,输入 powershell,点击回车。之后输入 cd+刚刚下载的ragflow文件夹路径,我这里是cd D:\demo\ragflow\docker按回车,输入docker compose -f docker-compose.yml up -d按回车。之后可以看到正在使用 docker 加载镜像,稍等一会儿加载完毕即可。

大概 15 分钟后镜像加载完毕就部署完毕了。最后我们输入docker logs -f ragflow-server,出现 RAGFLOW 字体就代表后端服务启动成功了。

Image

Image

Image

之后我们在浏览器地址栏输入:localhost:80即可打开ragflow登录页面。登录页面可以随便输入一个邮箱账号(随便编一个符合邮箱格式的就可以),全部是保存在你本地电脑上的,不用担心数据泄露。但是要注意第一个注册的默认是管理员,所以还是要注意保存一下你注册的邮箱信息。之后点击登录就可以使用ragflow了。

Image

Image

3、简易使用教程

首先我们配置一下 deepseek 模型服务,api-key 可以从 https://platform.deepseek.com/api_key 申请获取(官网已经恢复充值)。

之后我们上传资料创建一个本地知识库就可以啦。可以看到上传的资料支持多种格式,扫描版的 pdf 文档也是可以的。

Image

上传文件之后需要等待文档解析完成,可以看到文档解析的效果还是不错的

Image

创建对话助理后,就可以对话啦,注意在模型设置里把模型替换为 deepseek-chat

Image

4、启动与关闭 ragflow 程序:

关闭 ragflow 程序:

关掉 powershell 窗口,退出 docker 进程即可。

Image

启动 ragflow 程序:

打开 docker 软件,按下 win+R 打开 powershell,输入docker logs -f ragflow-server回车,就启动了后端服务了。!!检查一下 docker 软件,看一下 ragflow 是否全部启动,也就是下图中的几个服务全是运行状态:

Image

如果都在运行中,此时可以在浏览器输入localhost:80即可启动前端界面,愉快的使用 ragflow 啦!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

img

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐