DeepSeek使用openai这个库来调用,官网文档:首次调用 API | DeepSeek API Docs

新手步骤

获得API key

先要创建账户,到官网:DeepSeek | 深度求索 ,点击右上角的API开放平台,创建用户并登录。

然后进入创建API key的页面:首次调用 API | DeepSeek API Docs ,创建API key

保存好创建的API key,它只显示一次!

在api调用的时候,需要进行API key的验证,在这句话里:'client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")'

安装openai

pip3 install -U openai

API调用有两种方法,非流式和流式,流式API调用是指数据是按照流的形式逐步传输和处理的。具体来说,服务器不会等待将整个文档或数据集全部准备好才发送给客户端,而是一边生成数据,一边就将已经生成好的部分数据发送给客户端。客户端在接收到一部分数据后,就可以立即开始进行相应的处理,而不需要等待整个数据集合传输完毕。

非流式代码

from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

# Round 2
messages.append({'role': 'assistant', 'content': content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages
)
# ...

流式代码

from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)

reasoning_content = ""
content = ""

for chunk in response:
    if chunk.choices[0].delta.reasoning_content:
        reasoning_content += chunk.choices[0].delta.reasoning_content
    else:
        content += chunk.choices[0].delta.content

# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({'role': 'user', 'content': "How many Rs are there in the word 'strawberry'?"})
response = client.chat.completions.create(
    model="deepseek-reasoner",
    messages=messages,
    stream=True
)
# ...

可惜的是,现在能注册上,但是,因为DeepSeek太牛了,所以现在:

当前服务器资源紧张,为避免对您造成业务影响,我们已暂停 API 服务充 值。存量充 值金额可继续调用,敬请谅解!

所以,果然是手快有,手慢无啊!

多轮对话

官网文档:多轮对话 | DeepSeek API Docs

本指南将介绍如何使用 DeepSeek /chat/completions API 进行多轮对话。

DeepSeek /chat/completions API 是一个“无状态” API,即服务端不记录用户请求的上下文,用户在每次请求时,需将之前所有对话历史拼接好后,传递给对话 API。

下面的代码以 Python 语言,展示了如何进行上下文拼接,以实现多轮对话。

from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")

# Round 1
messages = [{"role": "user", "content": "What's the highest mountain in the world?"}]
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages
)

messages.append(response.choices[0].message)
print(f"Messages Round 1: {messages}")

# Round 2
messages.append({"role": "user", "content": "What is the second?"})
response = client.chat.completions.create(
    model="deepseek-chat",
    messages=messages
)

messages.append(response.choices[0].message)
print(f"Messages Round 2: {messages}")


第一轮请求时,传递给 API 的 messages 为:

[
    {"role": "user", "content": "What's the highest mountain in the world?"}
]

第二轮请求时:

  1. 要将第一轮中模型的输出添加到 messages 末尾
  2. 将新的提问添加到 messages 末尾

最终传递给 API 的 messages 为:

[
    {"role": "user", "content": "What's the highest mountain in the world?"},
    {"role": "assistant", "content": "The highest mountain in the world is Mount Everest."},
    {"role": "user", "content": "What is the second?"}
]

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐