
DeepSeek AI 推出 Janus 自回归框架,统一视觉、文本理解与生成的创新解决方案
Janus 是一个由 DeepSeek AI 推出的自回归框架,旨在统一多模态理解和生成任务,通过解耦视觉编码和统一的 Transformer 架构,实现高效的多模态处理。
·
❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
🚀 快速阅读
- Janus 是一个统一多模态理解和生成任务的自回归框架。
- 它通过解耦视觉编码和统一的 Transformer 架构实现高效的多模态处理。
- Janus 在图像生成、图像标注、视觉问答等领域有广泛的应用前景。
正文(附运行示例)
Janus 是什么
Janus 是一个由 DeepSeek AI 推出的自回归框架,旨在统一多模态理解和生成任务。它通过将视觉编码分离成不同的路径,解决以往方法的局限性,并使用单一的变换器架构进行处理。这种设计不仅减轻了视觉编码器在理解和生成任务中的角色冲突,还提高了框架的灵活性。Janus 在性能上超越以往的统一模型,在某些情况下超过特定任务模型的性能,使其成为下一代统一多模态模型的有力候选者。
Janus 的主要功能
- 多模态理解:Janus 能处理和理解包含图像和文本的信息,让大型语言模型能理解图像内容。
- 图像生成:基于文本描述,Janus 能生成相应的图像,展现出从文本到图像的创造力。
- 灵活性和扩展性:Janus 的设计支持独立选择最适合的编码方法进行多模态理解和生成,易于扩展和集成新的输入类型,如点云、EEG 信号或音频数据。
Janus 的技术原理
- 视觉编码的解耦:Janus 基于为多模态理解和生成任务设置独立的编码路径,解决两项任务对视觉信息粒度不同需求的冲突。
- 统一的 Transformer 架构:Janus 用单一的 Transformer 架构处理不同的编码路径,保持模型的统一性和效率。
- 自回归框架:Janus 基于自回归方法,逐步生成文本或图像数据,在生成任务中具有灵活性和控制性。
- 多阶段训练:Janus 的训练分为多个阶段,包括适配器和图像头部的训练、统一预训练和监督微调,确保模型在多模态任务上的表现。
- 跨模态交互:Janus 能处理不同模态间的交互,如将文本转换为图像或从图像中提取信息回答问题,实现不同模态间的无缝转换和理解。
如何运行 Janus
# 示例代码:多模态理解
# 加载模型和处理器
model_path = "deepseek-ai/Janus-1.3B"
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
# 准备输入数据
conversation = [
{
"role": "User",
"content": "<image_placeholder>\nConvert the formula into latex code.",
"images": ["images/equation.png"],
},
{"role": "Assistant", "content": ""},
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(conversations=conversation, images=pil_images, force_batchify=True).to(vl_gpt.device)
# 运行模型
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
)
# 解码输出
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)
资源
- Janus GitHub 仓库:https://github.com/deepseek-ai/Janus
- Janus HuggingFace 模型库:https://huggingface.co/deepseek-ai/Janus-1.3B
- Janus arXiv 技术论文:https://arxiv.org/pdf/2410.13848
❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!
🥦 微信公众号|搜一搜:蚝油菜花 🥦
更多推荐
所有评论(0)