
手把手带你用DeepSeek-R1和Ollama搭建本地应用,一文搞定!
本教程详细介绍了如何使用 DeepSeek R1 和 Ollama 构建本地化的 RAG 应用系统。文档处理:使用 PDFPlumberLoader 加载 PDF 文档,并通过 RecursiveCharacterTextSplitter 将文本切分成适当大小的块。向量存储:利用 Chroma 数据库和 Ollama 的嵌入模型建立向量存储系统,为后续的相似度检索提供基础。Chain 构建:设计并
前期准备
首先,我们需要下载 Ollama 以及配置相关环境。
Ollama 的 GitHub仓库 (https://github.com/ollama/ollama)中提供了详细的说明,简单总结如下:
Step1:下载 Ollama
下载(https://ollama.com/download)并双击运行 Ollama 应用程序。
Step2:验证安装
在命令行输入 ollama,如果出现以下信息,说明 Ollama 已经成功安装。
Step3:拉取模型
-
从命令行,参考 Ollama 模型列表 (https://ollama.com/library)和 文本嵌入模型列表 (https://python.langchain.com/v0.2/docs/integrations/text_embedding/)拉取模型。在该教程中,我们以 deepseek-r1:1.5b 和 nomic-embed-text 为例:
-
- 命令行输入 ollama pull deepseek-r1:1.5b,拉取通用的开源大语言模型 deepseek-r1:1.5b;(拉取模型时,可能比较缓慢。如果出现拉取错误,可以重新输入指令拉取)
- 命令行输入 ollama pull nomic-embed-text 拉取 文本嵌入模型 (https://ollama.com/search?c=embedding)nomic-embed-text。
-
当应用运行时,所有模型将自动在 localhost:11434 上启动。
-
注意,你的模型选择需要考虑你的本地硬件能力,该教程的参考显存大小 CPU Memory > 8GB。
Step4:部署模型
命令行窗口运行以下命令,部署模型。
ollama run deepseek-r1:1.5b
也可以从命令行直接运行部署模型,例如 ollama run deepseek-r1:1.5b。
注意如果只想使用 Ollama 部署 DeepSeek R1 模型则无需进行以下步骤。
Step5:安装依赖
# langchain_community
pip install langchain langchain_community
# Chroma
pip install langchain_chroma
# Ollama
pip install langchain_ollama
完成前期准备工作后,让我们开始逐步构建基于 LangChain、Ollama 和 DeepSeek R1 的本地 RAG 应用。下面将详细介绍具体实现步骤。
本地 RAG 应用实现
1. 文档加载
加载 PDF 文档并将其切分为适当大小的文本块。
from langchain_community.document_loaders import PDFPlumberLoader
file = "DeepSeek_R1.pdf"
# Load the PDF
loader = PDFPlumberLoader(file)
docs = loader.load()
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(docs)
2. 初始化向量存储
使用 Chroma 数据库存储文档向量,并配置 Ollama 提供的嵌入模型。
from langchain_chroma import Chroma
from langchain_ollama import OllamaEmbeddings
local_embeddings = OllamaEmbeddings(model="nomic-embed-text")
vectorstore = Chroma.from_documents(documents=all_splits, embedding=local_embeddings)
3. 构建 Chain 表达式
设置模型和提示模板,构建处理链。
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_ollama import ChatOllama
model = ChatOllama(
model="deepseek-r1:1.5b",
)
prompt = ChatPromptTemplate.from_template(
"Summarize the main themes in these retrieved docs: {docs}"
)
# 将传入的文档转换成字符串的形式
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = {"docs": format_docs} | prompt | model | StrOutputParser()
question = "What is the purpose of the DeepSeek project?"
docs = vectorstore.similarity_search(question)
chain.invoke(docs)
4. 带有检索的 QA
整合检索和问答功能。
from langchain_core.runnables import RunnablePassthrough
RAG_TEMPLATE = """
You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
<context>
{context}
</context>
Answer the following question:
{question}"""
rag_prompt = ChatPromptTemplate.from_template(RAG_TEMPLATE)
retriever = vectorstore.as_retriever()
qa_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| rag_prompt
| model
| StrOutputParser()
)
question = "What is the purpose of the DeepSeek project?"
# Run
qa_chain.invoke(question)
总结
本教程详细介绍了如何使用 DeepSeek R1 和 Ollama 构建本地化的 RAG 应用系统。我们通过四个主要步骤实现了完整的功能:
- 文档处理:使用 PDFPlumberLoader 加载 PDF 文档,并通过 RecursiveCharacterTextSplitter 将文本切分成适当大小的块。
- 向量存储:利用 Chroma 数据库和 Ollama 的嵌入模型建立向量存储系统,为后续的相似度检索提供基础。
- Chain 构建:设计并实现处理链,将文档处理、提示模板和模型响应整合成流程化的处理过程。
- RAG 实现:通过整合检索和问答功能,实现了完整的检索增强生成系统,能够基于文档内容回答用户问询。
通过本教程,可以快速搭建起自己的本地 RAG 系统,并根据实际需求进行定制化改进。建议在实践中多尝试不同的模型和参数配置,以获得最佳的使用效果。
注: 使用 streamlit 或 FastAPI 等工具,可以将本地 RAG 应用部署为 Web 服务,实现更广泛的应用场景。
仓库中也提供了 app.py (https://github.com/datawhalechina/handy-ollama/blob/main/notebook/C7/DeepSeek_R1_RAG/app.py)文件,可以直接运行该文件,启动 Web 服务。
参考文档 Build a RAG System with DeepSeek R1 & Ollama(https://apidog.com/blog/rag-deepseek-r1-ollama/)。
注意:运行该代码前,要提前运行 Ollama 服务。
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)