
完整解读:从DeepSeek Janus到Janus-Pro!
Janus 是一个简单、统一且可扩展的多模态理解与生成模型,其将多模态理解与生成的视觉编码进行解耦,缓解了两个任务潜在存在的冲突。可在未来通过拓展,纳入更多的输入模态。Janus-Pro 在此基础上,优化训练策略(包括增加训练步数、调整数据配比等)、增加数据(包括)、扩大模型规模(扩大到 70 亿参数),使得模型多模态理解和能力方面取得了进步。代码地址:https://github.com/dee
Take Home Message: Janus 是一个简单、统一且可扩展的多模态理解与生成模型,其将多模态理解与生成的视觉编码进行解耦,缓解了两个任务潜在存在的冲突。可在未来通过拓展,纳入更多的输入模态。Janus-Pro 在此基础上,优化训练策略(包括增加训练步数、调整数据配比等)、增加数据(包括使用合成数据等)、扩大模型规模(扩大到 70 亿参数),使得模型多模态理解和文本到图像指令遵循能力方面取得了进步。
代码地址:https://github.com/deepseek-ai/JanusJanus
Janus Pro 地址:https://github.com/deepseek-ai/Janus/blob/main/janus_pro_tech_report.pdf
Janus-Pro 是之前工作 Janus 的高级版本,具体地,包括(1)优化的训练策略、(2)扩展的训练数据以及(3)更大的模型规模。通过这些改进,Janus-Pro 在多模态理解和文本到图像指令遵循能力方面取得了显著进步,同时也增强了文本到图像生成的稳定性。在解读 Janus-Pro 前,先回顾一下 Janus。
回顾Janus
前作 Janus 是一个统一多模态理解与生成的自回归框架 ,用于解耦视觉编码以实现统一的多模态理解与生成。对于多模态理解,通常遵循 LLaVA 的设计,使用视觉编码器作为桥梁,使大语言模型能够理解图像。对于生成,通常基于扩散模型,也有一些基于自回归方法。一些方法试图使用单个 Transformer 试图统一多模态理解与生成任务,其通常使用单一视觉编码器处理两个任务的输入。
然而,多模态理解与生成任务所需要的表示有所差异。在多模态理解任务中,视觉编码器的目的是提取高层次的语义信息(如物体类别或者视觉属性),输出不仅涉及从图像中提取信息,还涉及复杂的语义推理,编码器主要集中于高维语义表示。生成任务主要关注于生成局部细节并在图像中保持全局一致性,因此需要低维度编码表示空间结构和纹理细节。在同一空间中将两种任务的表示进行统一会导致冲突。
Janus 包含 2 个独立的视觉编码路径,分别用于多模态理解、生成,并带来两个收益:1)缓解了源自多模态理解和生成不同粒度需求的冲突,2)具有灵活性和可扩展性,解耦后,理解和生成任务都可以采用针对其领域最先进的编码技术,未来可输入点云、脑电信号或音频数据,使用统一的 Transformer 进行处理。
-
对于文本理解,使用 LLM 内置 Tokenizer 将文本转换为离散 IDs;
-
对于多模态理解,使用 SigLIP 编码器抽取图片中的高维语义特征(笔者注:Cosmos中在Guardrails部分同样使用SigLIP编码器),使用 Adaptor(2 层 MLP)将抽取特征映射到 LLM 的文本特征空间中;
-
- 长边调整至 384 像素,使用 RGB(127, 127, 127)填充短边至 384 像素;
-
对于视觉生成,使用 VQ Tokenizer 将图像转换为离散IDs,使用Adaptor(2 层 MLP)将每个 ID 映射到 LLM 的文本特征空间中;
-
- 短边调整至384像素,长边裁剪至 384 像素;
-
整体训练使用 16 个节点,每个节点包含 8 块 Nvidia A100 GPU;
无论是视觉生成还是多模态理解任务,图片特征序列和文本特征序列都会连接在一起,作为 LLM(文中使用 DeepSeek-LLM 1.3B)的输入;
The built-in prediction head of the LLM is utilized for text predictions in both the pure text understanding and multimodal understanding tasks, while a randomly initialized prediction head is used for image predictions in the visual generation task. The entire model adheres to an autoregressive framework without the need for specially designed attention masks.Janus/blob/main/janus_pro_tech_report.pd
Janus 的训练分为 3 个阶段:
-
第一阶段:训练 Adaptor 与 Image Head,在嵌入空间创建语言元素与视觉元素之间的联系,使得 LLM 能够理解图像中的实体,并具备初步视觉生成能力;
-
- 对于多模态理解,使用来自 SHareGPT4V 的 125 万个图像-文本配对字幕数据,格式:<图像><文本>;
- 对于视觉生成,使用来自 ImageNet1k 的 120 万个样本,格式:<类别名><图像>;
-
第二阶段:统一预训练,使用多模态语料库进行统一预训练,学习多模态理解和生成。在该阶段使用纯文本数据、多模态理解数据和视觉生成数据。使用ImageNet-1k进行简单的视觉生成训练,随后使用通用文本到图像数据提升模型开放领域的视觉生成能力;
-
- 纯文本数据:DeepSeek-LLM 预训练语料库;
- 交错的图像 - 文本数据:WikiHow 和 WIT 数据集;
- 图像 Caption 数据:来自多个来源的图像,并采用开源多模态模型重新为部分图像添加字幕,数据格式为问答对,如 Describe the image in detail.;
- 表格和图表数据:来自 DeepSeek-VL 的相应表格和图表数据,数据格式为 ;
- 视觉生成数据:来自多个数据集的 image-caption 对以及 200 万个内部数据;
- 在训练过程中,以 25% 的概率随机仅使用 caption 的第一句话;
- ImageNet 样本仅在最初的 120K 训练步骤中出现,其他数据集的图像在后续 60K 步骤中出现;
-
第三阶段:监督微调,使用指令微调数据对预训练模型进行微调,以增强其遵循指令和对话的能力。微调除生成编码器之外的所有参数。在监督答案的同时,对系统和用户提示进行遮盖。为了确保 Janus 在多模态理解和生成方面都具备熟练度,不会针对特定任务分别微调模型。相反,我们使用纯文本对话数据、多模态理解数据和视觉生成数据的混合数据,以确保在各种场景下的多功能性;
-
- 文本理解:使用来自特定来源的数据;
- 多模态理解:使用来自多个来源的指令调整数据;
- 视觉生成:使用来自部分第二阶段数据集的图像-文本对子集以及 400 万个内部数据;
- 数据格式为:User: \n Assistant: ;
训练目标
Janus 是自回归模型,训练使用交叉熵损失函数,对于纯文本理解和多模态理解任务,在文本序列计算损失。对于视觉生成任务,仅在图像序列上计算损失。为了保持设计简单,没有为不同任务分配不同的损失权重。
推理
使用下一个词元预测方法,对于纯文本理解和多模态理解,从预测分布中依次采样词元。对于图像生成,使用无分类器引导。
可能的扩展
- 对于多模态理解,1)可选择更强的视觉编码器,2)可使用动态高分辨技术;
- 对于视觉生成,1)可选择更加细粒度的编码器,2)使用专门为视觉生成设计的损失函数,3)结合因果注意力和并行方法;
- 更多模态,能够集成 3D 点云、触觉、脑电图等输模态输入;
Janus-Pro升级
Janus 训练数据有限且模型容量(1B)相对较小,在一些方面存在不足,如在短提示下的图像生成表示不佳,文本到图像生成的质量不稳定。Janus-Pro 的架构与 Janus 相同,可参考下图:
主要改进
-
训练策略
-
- Stage 1: 增加训练步数,在 ImageNet 上充分训练;
- Stage 2: 不再使用 ImageNet,直接使用常规文本到图像数据的训练数据;
- Stage 3: 修改微调过程中的数据集配比,将多模态数据、纯文本数据和文本到图像的比例从 7:3:10 改为 5:1:4;
-
数据规模
-
-
多模态理解
-
- Stage 2: 增加 9000 万个样本,包括图像字幕数据 YFCC、表格图表文档理解数据 Doc-matrix;
- Stage 3: 加入 DeepSeek-VL2 额外数据集,如 MEME 理解等;
-
视觉生成:真实世界数据可能包含质量不高,导致文本到图像的生成不稳定,产生美学效果不佳的输出,Janus-Pro 使用 7200 万份合成美学数据样本,统一预训练阶段(Stage 2)真实数据与合成数据比例 1:1;
-
-
模型规模
-
- 将模型参数扩展到 70 亿参数规模;
实验细节
对比 Janus,Janus-Pro 实验细节基本一致。相比之下,更大规模参数的模型使用了更多的集群节点(16 个变为 32 个)。
Janus-Pro训练超参数
不足
对于多模态理解,输入分辨率限制在384x384,影响细粒度的视觉任务性能。对于文本到图像的生成,低分辨率导致生成结果缺乏细节。
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)