当模型蒸馏遇上零代码:Kiln框架技术解析

框架架构示意图

框架架构示意图

技术核心:全自动模型蒸馏流水线

Kiln框架通过三阶段流程实现模型蒸馏自动化:

image

关键技术创新点:

  • 🚀 全平台桌面客户端支持(Win/Mac/Linux)

  • 🔥 支持Llama/GPT4o/Mixtral等主流模型蒸馏

  • 🛡️ 隐私优先架构设计(支持Ollama本地化运行)

  • 📊 可视化数据生成工具(支持多模态数据标注)

企业级应用场景实测

医疗行业案例: 某三甲医院基于3万份电子病历数据,用DeepSeek-R1蒸馏出专科诊断辅助模型:

  1. 15分钟定义病历分析任务模板

  2. 2小时自动生成带专家标注的合成数据

  3. 同时训练8个不同规模的模型版本

  4. 最终部署300亿参数的本地化模型

数据生成界面

数据生成界面

技术突破点解析

结构化数据支持

  • 支持JSON格式输入输出

  • 内置多轮对话/思维链自动生成

  • 企业知识库直接对接能力

混合云部署方案

image

成本控制优势

  • 小模型(1B参数)推理成本降低92%

  • 训练耗时较传统方法缩短87%

  • 支持按token计费的serverless模式

技术选型指南

在这里插入图片描述

模型选择界面

模型选择界面

行业应用展望

  • 金融领域:交易策略模型快速迭代

  • 制造业:设备运维知识库即时更新

  • 教育行业:学科知识图谱动态优化

“未来的企业AI系统必定是持续进化的有机体,模型蒸馏技术让AI能力可以像细胞分裂一样自主迭代。”——圆周率AI首席架构师

技术深潜:想要实现真正的企业级AI私有化部署?圆周率AI提供从模型蒸馏到系统集成的全栈解决方案,支持:

✅ 本地化知识库对接

✅ 定制化安全审计模块

✅ 分布式训练集群搭建

✅ 硬件加速方案优化

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

Logo

欢迎加入DeepSeek 技术社区。在这里,你可以找到志同道合的朋友,共同探索AI技术的奥秘。

更多推荐