
o3并非独门秘技,谷歌已发背后关键机制,方法更简单、成本更低
o1/o3带火的推理计算Scaling,原来谷歌早在今年8月就曾探讨过。当时,来自斯坦福、牛津以及谷歌DeepMind的团队提出通过重复采样来扩展推理计算量——结果在编码任务中将性能最多提高40%。他们发现小模型通过生成多种答案/样本,其任务表现可能比一些大型模型单次尝试还要好。比如,DeepSeek-Coder通过重复采集5个样本,性能优于GPT-4o,而成本却仅为后者的三分之一。
o1/o3带火的推理计算Scaling,原来谷歌早在今年8月就曾探讨过。
当时,来自斯坦福、牛津以及谷歌DeepMind的团队提出通过重复采样来扩展推理计算量——
结果在编码任务中将性能最多提高40%。
他们发现小模型通过生成多种答案/样本,其任务表现可能比一些大型模型单次尝试还要好。
比如,DeepSeek-Coder通过重复采集5个样本,性能优于GPT-4o,而成本却仅为后者的三分之一。
这篇论文讲了什么?
这篇论文取名Monkey,灵感来自于无限猴子定理。
一只猴子在打字机键盘上随机敲击键盘无限长的时间,几乎肯定会打出任何给定的文本。
而在大模型的语境下,只要采的样够多,那么大模型总能找到正确解。
本文遵循的重复采样程序,首先通过大模型中采样,为给定的问题生成许多候选解。
其次再选择特定领域的验证器Verifier(比如代码的unittests),从生成的样本中选择最终答案。
重复采样的有效性取决于两个关键特性。
-
覆盖率,随着样本数量的增加,我们可以利用生成的任何样本解决多少问题。
-
精确度,在从生成的样本集合中选择最终答案的情况下,我们能否识别出正确的样本?
他们关注的是yes or no的任务,在这些任务中,答案可以直接被打分为对或者错,主要指标是成功率——即能够解决问题的比例。
通过重复采样,考虑这样一种设置,即模型在尝试解决问题时可以生成许多候选解。
因此,成功率既受到为许多问题生成正确样本的能力(即覆盖率)的影响,也受到识别这些正确样本的能力(即精确度)的影响。
基于此,确定了五种数学和编程任务:GSM8K、MATH、MiniF2F-MATH、CodeContests、SWE-benchLite。
结果显示,在多个任务和模型中,覆盖率随样本数量增加而提升,在某些情况下,重复采样可使较弱模型超越单样本性能更好的强模型,且成本效益更高
比如在使用Gemma-2B解决CodeContests编程问题时。随着样本数量的增加,覆盖率提高了300倍以上,从一次尝试的0.02%提高到10000次尝试的7.1%。解决来自GSM8K和MATH的数学单词问题时,Llama-3模型的覆盖率在10,000个样本的情况下增长到95%以上。
有趣的是,log(覆盖率)与样本数之间的关系往往遵循近似的幂律。
在Llama-3和Gemma模型中,可以观察到覆盖率与样本数呈近似对数线性增长,超过几个数量级。
在不同参数量、不同模型以及后训练水平(基础模型和微调模型)下,都显示通过重复采样Scaling推理时间计算,覆盖率都有一致的提升。
此外,他们还证明了这种Scaling还能降本增效,以FLOPs作为成本指标,以LIama-3为例。
计算公式如下:
比较 Llama-3-8B-Instruct 和 Llama3-70B-Instruct 的成本(以推理 FLOPs 数量衡量)和覆盖率。当FLOPs预算固定时,在 MiniF2F、GSM8K和 MATH 上,Llama-3-8B-Instruct的覆盖率总是高于更大(更贵)的 70B 模型。然而,在 CodeContests 中,70B 模型几乎总是更具成本效益。
对比API成本,当采样较多时,开源 DeepSeek-Coder-V2-Instruct 模型可以达到与闭源模型GPT-4o相同的问题解决率,而价格仅为后者的三分之一。
有趣的是,他们发现对于大多数任务和模型,覆盖率与样本数之间的关系可以用指数幂律来模拟。
因此总结,这篇文章以重复采样为轴心,在推理时扩展计算量,从而提高模型性能。
在一系列模型和任务中,重复采样可以显著提高使用任何生成样本解决问题的比例(即覆盖率)。当可以识别出正确的解决方案时(通过自动验证工具或其他验证算法),重复采样可以在推理过程中放大模型的能力。
与使用较强、较昂贵的模型进行较少的尝试相比,这种放大作用可使较弱的模型与大量样本的组合更具性能和成本效益。
来自斯坦福牛津谷歌
这篇论文是来自斯坦福、牛津大学以及谷歌DeepMind团队。TogetherAI提供计算支持。
其中可以看到有谷歌杰出科学家Quoc V. Le。
有网友表示,这有点像更简单的静态版o3。
o3在评价器的指导下,通过回溯动态搜索程序空间,而这种方法则依赖于静态采样和事后评价(投票、奖励模型等)。两者都能扩展推理计算,但O3的适应性更强。
o3会反复探索解决方案,不断完善路径,而重复采样会并行生成输出,没有反馈回路。如何取舍?o3的计算密集度更高,但在需要结构化推理的任务中表现出色。这种方法在编码/数学方面更具成本效益。
不过也有网友指出了背后的局限性。
我们不能一味地增加采样数量来提高性能。在某些时候,模型会出现停滞,生成的样本也会开始重复。
无论成本如何,都有一个极限,一个模型无法超越的最大思维水平。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)